PDF output from KiCad in Linux from SVG


The ps2pdf-d script I developed earlier worked fine for getting PDF from KiCad‘s Eeschema using Postscript as an intermediate format, but it falls short with Pcbnew because there is no way in Pcbnew to make a Postscript file that merges layers. Using File > Plot, you can pretty easily get Postscript files of individual layers, but you can’t get a merge of, say, the top copper, top silkscreen, and drawing layers.

But you can do this with File > Print SVG. You’ll need to play around with the dialog to get the SVG you want, but it’s pretty simple. Thus, svg2pdf-d was born:


# DESTRUCTIVELY convert all svg files in working directory to pdf.
# Source file extension is case sensitive!

# Requires inkscape.
# Mithat Konar 2013 <http://mithatkonar.com>


FILES=$(ls -1 *.svg)

# There are two alternatives below for doing the conversion.

#~ ## BEGIN ALT_1:
#~ ##     This approach isn't optimal because it restarts inkscape per
#~ ##     file. However the simplicity lends itself to porting (e.g., to
#~ ##     windows BAT.
#~ for file in $FILES
#~ do
    #~ base=$(basename $file .svg)
    #~ inkscape --without-gui ${OPTIONS} ${file} --export-pdf=${base}.pdf
#~ done
#~ ## END ALT_1

##     This approach seems to be better because it starts one inkscape
##     instance for all files, but it also involves a temp file.
# Make a temp file to store batch commands.
CMDFILE=$(mktemp) || { echo "Failed to create temp file"; exit 1; }

# build up the list of commands
for file in $FILES
    base=$(basename $file .svg)
    echo "${file} --export-pdf=${base}.pdf" >> $CMDFILE

# Process commands in a batch.
DISPLAY= inkscape ${OPTIONS} --shell < $CMDFILE rm -f $CMDFILE echo ## END ALT_2 # Delete old files. # Since inkscape exits with 0 even with errors, we need to explicitly check # for conversion before deleting originals. rv=0 for file in $FILES do     base=$(basename $file .svg)     if [[ -f ${base}.pdf ]]; then         rm $file     else         echo "$file not converted." 1>&2
exit $rv

svg2pdf-d requires Inkscape, which is not really that light. But it’s arguably something that should be in your FOSS toolkit anyway.

The Inkscape conversion used in svg2pdf-d seems to work fine with the SVG files generated by Eeschema as well. I’m seeing only minor differences between the SVG→PDF versus PS→PDF conversions, and the SVG→PDF files appear to have truer color. So the SVG approach may be the better one in general.

I’ll add I have added this to the wiki after a bit more testing making significant revisions.

Getting good PDF output from KiCad in Linux

Update: Turns out SVG might be a better base than PostScript for this. See PDF output from KiCad in Linux from SVG.

I’ve tried to get decent PDF output from KiCad‘s Eeschema a few different ways, but what I’ve found to work most reliably is to first export to PostScript (File > Plot > Plot PostScript) and then use the ps2pdf command from ghostscript to convert to PDF. (The Arch wiki has a good writeup on ps2pdf.)

The biggest problems with this are:

  1. It’s a lot of typing to get the conversion to happen (the minutia of which you won’t have memorized).
  2. It leaves you with both a PostScript and a PDF of the document(s), one of which is likely to get out of sync with the other, which may or may not be in sync with the actual schematic, etc.

To help with this, I use the script below. I drop a copy of it into the root of my KiCad projects and edit the OPTIONS as needed for the project. Then whenever I want PDFs of my schematics, I export PostScript from Eeschema and then click on this script in my file manager. Note that running this script will destroy any *.ps files in the directory—that’s by design.


# DESTRUCTIVELY convert all postscript files
# in working directory to PDF.
# Requires ghostscript.

# Mithat Konar 2013 [http://mithatkonar.com]

OPTIONS="-dOptimize=true -sPAPERSIZE=11x17"

FILES=$(ls -1 *.ps)

for file in $FILES
  ps2pdf $OPTIONS $file && rm $file

I’ve not tried the script on any PostScript files other than those produced by Eeschema, but I’ve got no reason to think it won’t work on other PS files as well.

OSH Park board order


Since Olimex’s PCB prototype service is currently offline, I decided to try another provider for a project I’m working on. The one I settled on is OSH Park, and I have to say the online ordering process worked far more smoothly than I expected. I uploaded a *.zip file full of Gerbers exported directly from KiCad, and the system recognized everything perfectly. Here’s hoping the boards turn out equally fine.

One bit of advice: As near as I can tell, KiCad’s layer alignment targets only add extra square inches to your design for which you will be charged, so you may as well leave them off.

First commercial PCB layout using libre tools

I recently delivered my first printed circuit board layout project using libre software. It’s an actively regulated, high current power supply for an audio equipment manufacturer, and it should be on the shelves in a month or so. The software used was KiCad (GPL2), though I did use FreeRouting (gratisware) to help route the board. I am quite happy with the results and the process. The work was done completely in Linux (Debian Wheezy, if you’re curious), proving that libre EDA–including the OS–is entirely possible.

Except for autorouting, the overall experience was comparable to working with my previous go-to package: the now-defunct WinQCad. While FreeRouting’s autorouter seems comparable to the best that other high-value EDA tools can presently offer, WinQCad’s was in a class of its own. FreeRouting still gets the job done, but it needs more hand-holding and prodding.

In addition to using it for PC layout, I am also using KiCad as a front-end schematic capture tool for SPICE simulations. Now that I’m over the worst of the learning curve, I’m really looking forward to doing more work in KiCad.